Forschungsprojekte

[nicht kategorisiert]

  • Ultra-fast polarity switching ion mobility spectrometer
    It is well known that depending on their gas phase energetic properties, different substances may form positive ions, negative ions or even ions of both polarities in some cases. Thus, non-targeted measurements or measurements aiming to monitor a variety of substances require analyzing ions of both polarities, e.g. in GC-IMS applications. In this project, an ion mobility spectrometer which is able to perform a polarity switch in less than 10 ms has been developed. This allows switching the measurement polarity after every spectrum, thus enabling real-time monitoring of ions of both polarities with a single drift tube and obviating the need for expensive twin drift tubes.
    Jahr: 2016
    screenshot of a dual-polarity ion mobility spectrum screenshot of a dual-polarity ion mobility spectrum © GEM
  • Ultra high resolution ion mobility spectrometry
    The aim of this research is the development of an ion mobility spectrometer with a resolving power above 300 and limits of detection in the pptv range for measurement times of less than a second. Furthermore, the performance using various non-radioactive ion sources such as X-ray and UV sources, electrospray ionization as well as non-radioactive electron emitters is being investigated. With a resolving power of 250 even for small, single-charged ions, the current setup is at the moment the highest resolving ion mobility spectrometer worldwide and the first device to separate isotopologues.
    Jahr: 2016
    Förderung: This research is founded by the German Research Foundation (DFG)
  • Data acquisition software for ion mobility spectrometers
    In order to control all parameters of a measurement setup, carry out automated measurements and analyze the generated data, a custom software suite has been developed using LabVIEW. It allows direct control of both our custom-built bus system as well as external devices, acquires and stores ion mobility spectra together with all relevant measurement parameters and allows the user to implement additional custom functions through a special scripting language.
    Jahr: 2016
  • Measurement electronics
    Virtually every measurement setup requires various control signals and a data acquisition system in order to function. The performance of these devices has a significant impact on the overall performance of the entire measurement setup. Thus, crucial components such as fast high voltage switches or picoampere amplifiers as well as a modular bus system were developed and manufactured in-house.
    Jahr: 2016
  • Chemical ionization detector for gas chromatography
    Ion mobility spectrometers deliver limits of detection in the low pptv-range within a measuring time of less than a second. The goal of this project is to transfer this sensitivity to a simple low-cost detector for gas chromatography.
    Jahr: 2016
  • High kinetic energy ion mobility spectrometry (HiKE-IMS)
    The crucial problem in most real-life applications of ion mobility spectrometers is the sample ionization, as it limits the detectability of many substances and is the primary source of matrix effects. In this project, a novel approach using reactant ions with high kinetic energy at reduced pressure is employed in order to minimize these problems and even allow quantitative measurements using ion mobility spectrometers. For example, it is possible to detect ppbv-concentrations of benzene in the presence of toluene and xylene in ppmv-concentrations
    Jahr: 2016
    Förderung: This research is founded by the German Research Foundation (DFG)